
AP COMPUTER SCIENCE

TOPIC IV: DATA REPRESENTATION

PAUL L. BAILEY

1. Memory

The memory of a computer is where the computer stores temporary information;
when you turn off the computer, the contents of the memory are gone. The memory
may be viewed as a sequence of slots which may contain either a zero and or a one.
The number of slots is the indicates size of that particular computer’s memory.

Each slot is called a bit. These bits are grouped together into blocks of various
sizes. Then each block is capable of holding a natural number, stored in base two.
If the block contains n bits, it can contain a number between 0 and 2n − 1.

A byte is a block of eight bits. Thus a byte can contain a number between 0 and
256.

A word is a block of w bits, where w depends on the particular computer; we
call w the word size of that computer. The word size is typically a multiple of eight
by a power of two, but this is not necessarily the case. For example, old DEC PDP
computers used 12, 18, and 36 bit words, interpreted as 4, 6, and 12 octal digits,
respectively. Intel chips used in DOS and Windows computers have used 16, 32,
and more recently, 64 bit words, interpreted as 4, 8, and 16 hexadecimal digits,
respectively.

The computer views its memory as broken up into words; the number of bits in
the memory is a multiple of the word size.

The computer accesses its memory by enumerating its words; the number (or
location) of a word is called its address. In the simplest case, the computer stores an
address as a word, so the computer’s memory contains at most 2w words, numbered
from 0 to 2w−1. The maximum number of words the computer can access is called
the address space of the computer. We note that, using segmentation, Intel chips
do not work this way, and their address spaces are larger then 2w.

When the computer stores information in its memory, it stores different types of
information in different ways. These types are called data types. Later, it interprets
the information according to its data type; in particular, it needs to know the data
type of the information stored in a specific area of its memory, in order to interpret
it correctly.

We now discuss the format in which a computer stores various data types. Keep
in mind that the memory in actually a sequence of bits, or from a slightly different
point of view, the memory is a sequence of words, each of which is a sequence of
bits.

Date: Monday, September 7, 2021.

1

2

2. Integers

Consider a computer with word size w; there are w bits in each word.

2.1. Unsigned integers. A nonnegative integer is typically called an unsigned
integer in computer jargon. One unsigned integer is stored in a single word. The
bits of the word are interpreted as representing the integer in base two. In this way,
a word can store any integer between 0 and 2w − 1.

Example 1. The word size is w = 8 bits, so a word can hold an integer between
0 and 255.

A given word contains the bits 10010011. Interpret this word as an unsigned
integer.

Solution. Since (10010011)2 = 128 + 16 + 2 + 1 = 147, this word is interpreted as
the integer 147. �

If the computer adds to unsigned integers in two words and places the result in
another word, it is possible that overflow may occur; that is, the result may be too
large to fit in a single word. In this case, the highest order bit is dropped.

Suppose a and b are integer stored in words of length w bits. Since a word can
only contain integers between 0 and 2w−1, the sum a+ b is actually the remainder
when a + b is divided by 2w.

Example 2. The word size is w = 8. Let a, b, and c represent words containing
bits. Suppose a = 11001100 and b = 01110111, and the computer adds these and
stores the result in c. Find c. Also find the decimal representation of a, b, and c.

Solution. The binary sum of a and b is 101000011, which is 9 bits long. The highest
bit is dropped, so the computer stores c = 01000011. In decimal, a represents
128 + 64 + 8 + 4 = 204, and b represents 64 + 32 + 16 + 4 + 2 + 1 = 119. Note
that 204 + 119 = 323, which is greater than 255. Now c represents 64 + 2 + 1 = 67,
which is the remainder when 323 is divided by 256. �

Warning 1. The Java programming language does not support unsigned integers.

2.2. Signed Integers. A signed integer is a word which is interpreted an integer
which may be positive or negative. The high bit is reserved to the sign, where 0
means nonnegative and 1 means negative. This cuts in have the number of positive
integers which may be stored.

In a word of length w, a signed integer varies between −2w−1 and 2w−1− 1. For
example, if w = 8, a word is capable of storing numbers between −128 and 127.

It is interesting to examine how a computer stores negative numbers. Now we
realize that subtracting a number means adding its negative. Thus the computer
stores a negative number in such a way that, when the numbers are added according
to the addition algorithm already outlined, the desired result is obtained.

Computers store negative in a form known as two’s complement. Since in a word
of length w, 2w is treated as zero (as described above), then −a and 2w − a will
be treated identically. The two’s complement of a with respect to word length w is
2w − a, expressed in binary.

3

Example 3. Let w = 8 and a = 00110011. Find the two’s complement of a.

Solution. We have (00110011)2 = 32 + 16 + 2 + 1 = 51, and 256 − 51 = 205.
Converting 205 to binary yields (205)10 = (11001101)2.

Note that 11001101 may be obtained from 00110011 by flipping every bit of
00110011, and adding 1. �

A word of length w equals its highest possible value (2w − 1) if and only if every
bit is equal to one. If a is a word and b is obtained from a by flipping every bit
(changing zero to one and changing one to zero), then the sum of a and b has every
bit set to one. So, it is 2w − 1. Adding one to this gives 2w, which gives zero when
stored in a word of length w.

In conclusion, in order to negate a word a, the computer flips every bit of a, and
adds one, using binary addition. To subtract a from b, the computer constructs
negative a, and adds b to this.

To negate a signed integer:

(a) Flip every bit
(b) Add 1

If the original number was negative, this procedure will cause an overflow bit; drop
it. If the original number had a 1 as its least significant bit, it may be easier to
reverse the order:

(a) Subtract 1.
(b) Flip every bit.

This actually produces the same result (try it).

Example 4. A computer stores −5 in a signed byte. Find the bits which are
stored.

Solution. Since (5)10 = (101)2, 5 is stored as 00000101. Flipping every bit gives
11111010. Adding one gives 11111011. The computer stores 11111011. �

Example 5. A byte contains the bits 10011001. Interpret this as a signed integer.

Solution. Since the high bit is set, the number is negative. We negate it, to find
the positive integer of which it is the negative.

Subtracting one gives 10011000. Flipping every bit gives 01100111. Converting
this to decimal gives 64 + 32 + 4 + 2 + 1 = 103. So, the original stored integer was
−103. �

Example 6. Let a = (51)10 and b = (100)10. Show how the computer of word
length w = 8 would compute b− a.

Solution. Note that, in binary, we have a = 00110011 and b = 01100100. Now let
c = 11001101; this is the two’s complement of a, and is interpreted by the computer
as negative a. Now b− a = b + c internally. We have

(01100100)2 + (11001101)2 = (100110001)2;

however, this result is nine bits long, and cannot fit in a word. The high bit is
dropped, and the result is b−a = 00110001. Note that (00110001)2 = 32+16+1 =
49; also, 100− 51 = 49. �

4

3. Floating Point Numbers

We think of rational numbers as a quotient of integers; it is possible to write a
computer program to do arithmetic on rational numbers stored as a pair of integers
with no common factors; however, typical computer hardware does not do this
automatically.

However, most modern computers can, in their hardware, deal with a format
known as floating point. This is very similar to what is commonly referred to as
scientific notation.

Consider a computer with word length w, or, a computer which can easily handle
data of bit length w. To store a floating point number x, the w bits of the word are
broken up into three parts; the sign s, the mantissa f (also known as the significand
or fraction), and the exponent e. Then

x = s · f · 2e where s = ±1 and 1 ≤ f < 2.

Let us allocate w bits to store our floating point number; we call w the precision
of the representation. We store x using the w bits broken into three groups. The
sign requires 1 bit, the part representing the exponent requires p bits, and the part
representing the mantissa requires q bits. Thus w = 1 +p+ q. The most significant
(leftmost) bit stores the sign; the next p bits store a representation of the exponent,
and the least significant (rightmost) q bits store the mantissa.

A 64-bit precision number could be stored thusly:

We could store the exponent as a signed integer e, and the mantissa as an

unsigned integer v interpreted as f =
v

2q−1
. In practice, it is possible to play

a couple tricks to improve the amount of information which is stored in a fixed
number of bits, and to allow us to store things like ±∞ and NaN (“not a number”).

The first trick is to store the exponent as an unsigned integer u, with a fixed
(predetermined) exponent bias offset o subtracted from it. Thus e = u − o. For
example, an 8-bit exponent would store numbers from 0 to 255; an bias of o = 127
would be subtracted from it, for a range of −126 to 127. For an x bit exponent,
the bias would typically be o = 2x−1 − 1.

The second trick is to avoid storing the leading 1 in the mantissa. To understand
this, note that in decimal scientific notation, we would write 4.21 × 103 and not
0.421 × 104 or 42.1 × 102; we always write exactly one nonzero digit. In binary,
however, the only nonzero digit is 1, so we can simply assume the 1 exists. So if
the mantissa contains the bits 01011, the actual value we interpret is (101011)2 =

(43)10. Thus we store the mantissa as an unsigned integer v, where f = 1 +
v

2q
.

Lastly, the sign s = ±1 is stored as one bit, say b, where b = 0 or b = 1, and
s = (−1)b.

5

We summarize the variables we have used to describe floating point representa-
tions.

• x is the number to be stored.
• s = ±1 is the sign, f is the fractional mantissa, e is the exponent, and
x = s · f · 2e.
• w is the precision, 1 is the number of sign bits, p is the number of exponent

bits, and q is the number of mantissa bits.
• b is the sign bit, u is the unsigned integer give by the p exponent bits, v is

the unsigned integer given by the q mantissa bits, and o is the bias.

• Thus s = (−1)b, e = u− o and f = 1 +
v

2q
.

The Institute for Electrical and Electronics Engineers (IEEE) floating point stan-
dard IEEE 754 specifies the preferred values for p, q, and o, as indicated in the
following chart. Quarter precision is not actually in the standard.

The following table lists the bit lengths and the biases for the various precisions
for a number x.

Type Sign Exponent p Mantissa q Total bits w Bias o

Quarter Precision* 1 3 4 8 3
Half Precision 1 5 10 16 15
Single Precision 1 8 23 32 1023
Double Precision 1 11 52 64 16383

Example 7. A byte holds 01011101. Interpret this as a number according to the
scheme outlined above.

Solution. A floating point number is stored in w = 8 bits. The sign requires 1 bit,
the exponent uses p = 3 bits, and the mantissa uses q = 4 bits. The exponent bias
is o = 3.

We break the byte into three parts:

01010101 ⇒ 0 101 1101.

Each part is interpreted as an unsigned integer.
The first part is the sign bit 0, which means b = 0, so s = 1 (the number is

positive).
The second part is the exponent, and its three bits 101 represent the unbiased

exponent u = 5, from which we subtract the bias o = 3 to get e = 2.
The third part is the mantissa, and its four bits 1101 imply that v = 13, so

should be viewed as

f = 1 +
13

24
= (1.1101)2 = 2 +

1

2
+

1

4
+

1

16
=

45

16
.

Thus the number stored is

s · f · 2e = 1× 45

16
× 22 =

45

4
= (11.25)10.

�

6

The observant reader will have realized at this point that our model has some
duplication and some ambiguities. Firstly, we note that because of the “hidden
bit”, the mantissa cannot be zero, so we need to designate how zero is stored.

Also, 1e = 1 for all e, so there exist some duplicate representations unless we
state otherwise; in particular, if v = 0, any value for u will produce ±1.

Moreover, 0e = 0 (unless e = 0) and f0 = 1 (unless f = 0), so we need to at
least consider those potential ambiguities.

These difficulties are managed by treating u = 0 (all exponent bits off) and
u = 2p − 1 (all exponent bits on) as special cases. That is, for these two values of
u, the meaning is not x = s× f × 2e, but rather, is specified separately as follows.

• Zero: Zero is stored with all bits off. So b = 0, u = 0, and v = 0, which
implies s = 1, f = 1, and e = 0. Note that in this case x 6= 1.
• Negative Zero: If b = 1, u = 0, and v = 0, we interpret the value

as “negative zero”. This is normally treated as zero, although whereas
dividing a positive number by zero gives infinity, dividing a positive number
by negative zero yields negative infinity.
• Subnormalized Numbers: If u = 0 and v 6= 0, the number is inter-

preted as a subnormal number. That is, in this case, the hidden bit is not
assumed to be 1 but rather zero. This allows for storing numbers less than
the smallest normalized number.
• Infinities: Plus or minus infinity is stored with v = 0 and u = 2p − 1 (all

ones). Then the high bit determines the sign of infinity.
• NaN’s: If u = 2p − 1 (all bits on) and u 6= 0, we have “Not a Number”.

7

4. Text

Computers store text as a sequence of characters. Characters are represented in
the computer as numbers. There are various standard way of representing charac-
ters as numbers; the standards which is most commonly used today are ASCII and
its extension, Unicode.

4.1. ASCII. The acronym ASCII stands for American Standard Code for Infor-
mation Interchange. This standard uses seven bits; it is a mapping of numbers
between 0 and 127 to how they should be interpreted by an output device.

The characters are grouped into four types:

• Alphabetic: upper and lower case letters
• Numeric: the digits 0 through 9
• Punctuation: other printable characters
• Control: nonprintable characters, used to control devices

The following table lists the standard; control characters are in angle brackets. We
use <sp> to indicate a space, which is considered a printable character.

0 <NUL> 16 <SO> 32 <sp> 48 0 64 @ 80 P 96 ‘ 112 p

1 <SOH> 17 <XON> 33 ! 49 1 65 A 81 Q 97 a 113 q

2 <STX> 18 <DC2> 34 " 50 2 66 B 82 R 98 b 114 r

3 <ETX> 19 <XOF> 35 # 51 3 67 C 83 S 99 c 115 s

4 <EOT> 20 <DC4> 36 $ 52 4 68 D 84 T 100 d 116 t

5 <ENQ> 21 <NAK> 37 % 53 5 69 E 85 U 101 e 117 u

6 <ACK> 22 <SYN> 38 & 54 6 70 F 86 V 102 f 118 v

7 <BEL> 23 <ETB> 39 ’ 55 7 71 G 87 W 103 g 119 w

8 <BS> 24 <CAN> 40 (56 8 72 H 88 X 104 h 120 x

9 <TAB> 25 41) 57 9 73 I 89 Y 105 i 121 y

10 <LF> 26 <SUB> 42 * 58 : 74 J 90 Z 106 j 122 z

11 <VT> 27 <ESC> 43 + 59 ; 75 K 91 [107 k 123 {

12 <FF> 28 <FS> 44 , 60 < 76 L 92 \ 108 l 124 |

13 <CR> 29 <GS> 45 - 61 = 77 M 93] 109 m 125 }

14 <SO> 30 <RS> 46 . 62 > 78 N 94 ^ 110 n 126 ~

15 <SI> 31 <US> 47 / 63 ? 79 O 95 _ 111 o 127 <RUB>

4.2. Printable characters. Alphabetic, numeric, and punctuation characters are
called printable characters. We list these.

Alphabetic characters: ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

Numeric characters: 0123456789

Punctuation: <sp> !"#$%&’()*+,-./:;<=>?@[\]^_‘{|}~

8

4.3. Control characters. Control characters are used to control the behavior of
peripheral devices, or may be sent by peripheral devices to the computer as signals.

Certain control characters are used very frequently, and in a more or less standard
way. We list some of these.

0 <NUL> Null Used as a string terminator in the

C programming language

3 <ETX> End Transmission Breaks the program execution

7 <BEL> Bell Sounds a bell or beep

8 <BS> Backspace Delete previous character

9 <TAB> Tab Separates columns;

sometimes used as a field separator

10 <LF> Line Feed Move the cursor down one line;

used as a line separator in UNIX

13 <CR> Carriage Return Put the cursor at the beginning

of the current line;

output of the "Enter" key

17 <XOF> X-off Resume transmission

19 <XON> X-on Pause transmission

27 <ESC> Escape Exits some programs

127 <RUB> Rubout Delete current character;

sometimes delete previous character

Pressing the control key together with another key toggles bit 6; since 26 = 64,
this has the effect of subtracting 64 from the ASCII value of a letter. Thus CTRL-
C often stops the program execution, CTRL-S pauses transmission, and CTRL-Q
resumes transmission. Also, CTRL-G is a beep.

4.4. Strings. A string is a finite sequence of characters; usually the word string
refers to a sequence of characters in memory, without any carriage returns. It is
one word, or name, or description. In most programming languages, strings are
surrounded by quotation marks when they are referred to.

To reference a string, the computer needs to know where the string starts (its
beginning position) and where it stops (its ending position). There are two standard
ways of doing this, which we refer to as the Pascal and C conventions.

• Pascal: the first byte holds the length of the string, so only strings contain-
ing up to 255 characters can be stored;
• C: the first byte holds the first character; the last character in the string is

followed by a zero byte, call the string terminator.

For example, consider the string "This is a test". The length of this string
is 14 (we include the spaces but not the quotation marks as characters which we
count). Pascal and C each allocate 15 bytes to store this string.

Pascal stores the number 14 followed by the numbers which are the ASCII values
of the characters:

14 84 104 105 115 32 105 115 32 97 32 116 101 115 116

[len] T h i s <sp> i s <sp> a <sp> t e s t

C stores the ASCII values of the characters, followed by a byte containing zero.

84 104 105 115 32 105 115 32 97 32 116 101 115 116 0

T h i s <sp> i s <sp> a <sp> t e s t [end]

9

4.5. Text files. Text files contain sequences of bytes containing numbers, inter-
preted as characters via ASCII. Lines in a text file as separated according to two
different standards:

• UNIX: lines are separated by a single <LF> (ASCII 10).
• DOS: lines are separated by a <CR><LF> (ASCII 13 followed by ASCII 10).

This difference is nightmarish for programmers, and is another example of the
horrible mistakes made by Microsoft (UNIX preceded DOS by more than a decade).

5. Images

We describe a simplified version of how a computer may store an image.
The atomic unit of storage is a pixel. This word may refer to a physical attribute

of the computer monitor, or to a logical attribute of the storage protocol. It is the
latter meaning which we use.

An image is stored as a grid, with x pixels across and y pixels down. Each pixel
is a position in this grid, and represents a specific color.

The resolution of the image refers to x× y.
One pixel represents a specific color. This is stored as a number, so the entire

image requires xy numbers.
The depth of the color refers to the number of bits used to represent a color. In

indexed mode, the number specifying the color is used as an index to a palette. In
direct mode, the bits of the number are broken up into three blocks, which specify
the intensity of the primary colors red, green, and blue. The combined intensities
of these colors is often referred to as RGB.

We describe the evolution of IBM PC compatible graphics adaptors.

• CGA resolution 320 × 200, choice of two palettes with 4 colors each, and
a choice of low or high intensity for each color.
• EGA resolution 640× 350, with a sixteen color palette. The sixteen colors

of the palette are selected from a choice of 64 colors (64 = 26, with 2 bits
for each primary color intensity)
• VGA resolution 640× 400, with a sixty four color palette, selected from a

possible 262144 colors (262144 = 218, with 6 bits per primary color)
• SVGA Super VGA allows for variations. It is now common to use 8 bits per

primary color, for 256 possible intensities per color, giving 224 = 16777216
possible colors.

6. Sound

Sound is the variation in air pressure. Thus, sound can be modeled as a single
real valued function of time. Such a function is represented on a computer breaking
up time into small time units of equal size, and recording the air pressure at that
moment. This is then stored as a sequence of numbers, each representing the air
pressure.

10

7. Appendix

We list some of the history of word sizes. Note that IBM microcomputers and
compatibles used Intel chips, whereas Macintosh used Motorola chips.

• DEC PDP-8 used a twelve bit word (212 = 4096). Introduced in 1965,
this was the first successful minicomputer, and was built with integrated
circuits.
• Intel 4004 was a four bit microprocessor (24 = 16). Introduced in 1971,

this was the first single chip microprocessor.
• Intel 8008 was an eight bit microprocessor (28 = 256). Introduced in 1974.
• Intel 8088 was a sixteen bit microprocessor (216 = 65536) with an eight bit

bus. Introduced in 1979 and used in the first IBM PC.
• Intel 8086 was a sixteen bit microprocessor with a sixteen bit bus. Intro-

duced in 1978.
• Intel 80286 was sixteen bits. Introduced in 1982 and used the IBM AT.
• Intel 80386 was 32 bits (232 = 4294967296). Introduced in 1985 and used

in the high end IBM PS/2. DOS still used 16-bit compatibility mode.
Later, Microsoft developed the Windows 95 operating system, which used
the 32-bit instruction set.
• Intel 80486 was 32 bits. Introduced in 1989.
• Intel Pentium was 32 bits with a 64 bit bus. Introduced in 1993.
• Intel Pentium II was 32 bits. Introduced in 1997.
• Intel Pentium III was 32 bits. Introduced in 1999.
• Intel Pentium 4 was 32 bits. Introduced in 2000.
• Intel Itanium was 64 bits (264 ≈ 1.84 × 1019). Introduced in 2001 with a

completely new (not backwards compatible) instruction set.

8. Problems

Problem 1. An eight bit computer adds the unsigned integers 200 and 100, and
stores the result in a byte. Find the bits that are stored in the byte, and find the
value of the byte as an unsigned integer.

Problem 2. An eight bit computer stores −100 as a signed integer in a byte. Find
the bits that are stored in the byte.

Problem 3. A byte holds the bits 11001100.

(a) Interpret this byte as an unsigned integer.
(b) Interpret this byte as a signed integer.
(c) Interpret this byte as a floating point number as in Example ??.

Problem 4. A program stores the string “Sept 11, 2001” in memory using the
Pascal convention. Determine the sequence of numbers (expressed in decimal)
which is stored.

Problem 5. A program finds the sequence

79 83 65 77 65 32 57 47 49 49 0

in memory, and interprets it as a string stored with the C convention. Find the
string.

Department of Mathematics, Paragon Science Academy
Email address: paul.bailey@basised.com

